16 research outputs found

    Big data reference architecture for industry 4.0: including economic and ethical Implications

    Get PDF
    El rápido progreso de la Industria 4.0 se consigue gracias a las innovaciones en varios campos, por ejemplo, la fabricación, el big data y la inteligencia artificial. La tesis explica la necesidad de una arquitectura del Big Data para implementar la Inteligencia Artificial en la Industria 4.0 y presenta una arquitectura cognitiva para la inteligencia artificial - CAAI - como posible solución, que se adapta especialmente a los retos de las pequeñas y medianas empresas. La tesis examina las implicaciones económicas y éticas de esas tecnologías y destaca tanto los beneficios como los retos para los países, las empresas y los trabajadores individuales. El "Cuestionario de la Industria 4.0 para las PYME" se realizó para averiguar los requisitos y necesidades de las pequeñas y medianas empresas. Así, la nueva arquitectura de la CAAI presenta un modelo de diseño de software y proporciona un conjunto de bloques de construcción de código abierto para apoyar a las empresas durante la implementación. Diferentes casos de uso demuestran la aplicabilidad de la arquitectura y la siguiente evaluación verifica la funcionalidad de la misma.The rapid progress in Industry 4.0 is achieved through innovations in several fields, e.g., manufacturing, big data, and artificial intelligence. The thesis motivates the need for a Big Data architecture to apply artificial intelligence in Industry 4.0 and presents a cognitive architecture for artificial intelligence – CAAI – as a possible solution, which is especially suited for the challenges of small and medium-sized enterprises. The work examines the economic and ethical implications of those technologies and highlights the benefits but also the challenges for countries, companies and individual workers. The "Industry 4.0 Questionnaire for SMEs" was conducted to gain insights into smaller and medium-sized companies’ requirements and needs. Thus, the new CAAI architecture presents a software design blueprint and provides a set of open-source building blocks to support companies during implementation. Different use cases demonstrate the applicability of the architecture and the following evaluation verifies the functionality of the architecture

    Evaluation of Cognitive Architectures for Cyber-Physical Production Systems

    Full text link
    Cyber-physical production systems (CPPS) integrate physical and computational resources due to increasingly available sensors and processing power. This enables the usage of data, to create additional benefit, such as condition monitoring or optimization. These capabilities can lead to cognition, such that the system is able to adapt independently to changing circumstances by learning from additional sensors information. Developing a reference architecture for the design of CPPS and standardization of machines and software interfaces is crucial to enable compatibility of data usage between different machine models and vendors. This paper analysis existing reference architecture regarding their cognitive abilities, based on requirements that are derived from three different use cases. The results from the evaluation of the reference architectures, which include two instances that stem from the field of cognitive science, reveal a gap in the applicability of the architectures regarding the generalizability and the level of abstraction. While reference architectures from the field of automation are suitable to address use case specific requirements, and do not address the general requirements, especially w.r.t. adaptability, the examples from the field of cognitive science are well usable to reach a high level of adaption and cognition. It is desirable to merge advantages of both classes of architectures to address challenges in the field of CPPS in Industrie 4.0

    Cognitive Capabilities for the CAAI in Cyber-Physical Production Systems

    Full text link
    This paper presents the cognitive module of the cognitive architecture for artificial intelligence (CAAI) in cyber-physical production systems (CPPS). The goal of this architecture is to reduce the implementation effort of artificial intelligence (AI) algorithms in CPPS. Declarative user goals and the provided algorithm-knowledge base allow the dynamic pipeline orchestration and configuration. A big data platform (BDP) instantiates the pipelines and monitors the CPPS performance for further evaluation through the cognitive module. Thus, the cognitive module is able to select feasible and robust configurations for process pipelines in varying use cases. Furthermore, it automatically adapts the models and algorithms based on model quality and resource consumption. The cognitive module also instantiates additional pipelines to test algorithms from different classes. CAAI relies on well-defined interfaces to enable the integration of additional modules and reduce implementation effort. Finally, an implementation based on Docker, Kubernetes, and Kafka for the virtualization and orchestration of the individual modules and as messaging-technology for module communication is used to evaluate a real-world use case

    Unraveling local tissue changes within severely injured skeletal muscles in response to MSC-based intervention using MALDI Imaging mass spectrometry

    Get PDF
    Pre-clinical and clinical studies are now beginning to demonstrate the high potential of cell therapies in enhancing muscle regeneration. We previously demonstrated functional benefit after the transplantation of autologous bone marrow mesenchymal stromal cells (MSC-TX) into a severe muscle crush trauma model. Despite our increasing understanding of the molecular and cellular mechanisms underlying MSC's regenerative function, little is known about the local molecular alterations and their spatial distribution within the tissue after MSC-TX. Here, we used MALDI imaging mass spectrometry (MALDI-IMS) in combination with multivariate statistical strategies to uncover previously unknown peptide alterations within severely injured skeletal muscles. Our analysis revealed that very early molecular alterations in response to MSC-TX occur largely in the region adjacent to the trauma and only to a small extent in the actual trauma region. Using "bottom up" mass spectrometry, we subsequently identified the proteins corresponding to the differentially expressed peptide intensity distributions in the specific muscle regions and used immunohistochemistry to validate our results. These findings extend our current understanding about the early molecular processes of muscle healing and highlights the critical role of trauma adjacent tissue during the early therapeutic response upon treatment with MSC

    Employee Technology Acceptance of Industry 4.0 in SMES

    No full text

    Social Media User Emotions During Covid19

    No full text

    Trinkwasser-Sicherheit mit Predictive Analytics und Oracle

    Get PDF
    Verunreinigungen im Wassernetz können weite Teile der Bevölkerung unmittelbar gefährden. Gefahrenpotenziale bestehen dabei nicht nur durch mögliche kriminelle Handlungen und terroristische Anschläge. Auch Betriebsstörungen, Systemfehler und Naturkatastrophen können zu Verunreinigungen führen
    corecore